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Space-Time CE/SE Method

Ching Y. Loh
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1. Introduction

The Space-Time Conservation Element and Solution Element Method, or CE/SE
Method for short [1-3], is a recently developed numerical method for conservation
laws. Despite its second order accuracy in space and time, it possesses low dis-
persion errors and low dissipation. The method is robust enough to cover a wide
range of compressible flows: from weak linear acoustic waves to strong discontin-
uous waves (shocks). An outstanding feature of the CE/SE scheme is its truly
multi-dimensional, simple but effective non-reflecting boundary condition (NRBC),
which is particularly valuable for CAA (computational aeroacoustics).

In nature, the method may be categorized as a finite volume method, where
the conservation element (C'E) is equivalent to a finite control volume (or cell) and
the solution element (SE) can be understood as the cell interface. However, due
to its careful treatment of the surface fluxes and geometry, it is different from the
existing schemes.

Currently, the CE/SE scheme has been developed to a matured stage that a
3-D unstructured CE/SE Navier-Stokes solver is already available. However, in the
present review paper, as a general introduction to the CE/SE method, only the 2-D
unstructured Euler CE/SE solver is chosen and sketched in §2. Then applications of
the 2-D and 3-D CE/SE schemes to linear, and in particular, nonlinear aeroacoustics
are depicted in § 3, § 4, and § 5 to demonstrate its robustness and capability.

2. The 2-D CE/SE Euler Scheme

In this Section, only a brief sketch of the CE/SE scheme for the 2-D Euler
equations for gas dynamics is given. Detailed description of the method may be
found in the original papers [1- 3].

2.1. Conservation Form of the 2-D Unsteady Euler Equations. Con-
sider a dimensionless conservation form of the unsteady 2-D Euler equations of a
perfect gas. Let p, u, v, p, and v be the density, streamwise and transverse velocity
components, static pressure, and constant specific heat ratio, respectively. The 2-D
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FIGURE 1. CE/SE unstructured grid in space-time Ej3 space.

Euler equations then can be written in the following vector form:
(1) Ut +Fx+Gy:0,

where z, y, and ¢ are the streamwise and transversal coordinates and time, re-
spectively. The conservative flow variable vector U and the flux vectors in the
streamwise and radial directions, F and G, are given by:

U1 F1 Gl

_ U, _ E _ G,
U= Us | F= IR G = Gs |

U4 F4 G4

with the conservative flow variables
Ui=p, Us=pu, Us=pv, Us=p/(y—1)+pu’+v>)/2.
where the fluxes are:
Fr=U, F=(y-1)Us+ [3-7U; - (v—1U3] /20,

F3 =UaUs/Ur,  Fi=9UxUs/Ur = (v = DU [UF + U3] /207,
G1=Us, Gy =UsUs/Ui, Gs=(y—1)Us+ [(3=7)UZ~(y-1)Uj] /2U4,
G4 =UsUs/Uy — (v — 1)Us [U; + U3] /2U%.

By considering (z,y,t) as coordinates of a three-dimensional Euclidean space, E3,

and using Gauss’ divergence theorem, it follows that Eq. (1) is equivalent to the
following integral conservation law:

(2) 7{ H,,-dS=0, m=1,234,
S(V)

where S(V') denotes the surface around a volume V in E3 and Hy, = (Fr, G, Um)-

In general, the CE/SE method systematically the integral equations (2) and
naturally captures shocks and other discontinuities in the flow. Both conservative
variables U and their spatial derivatives U, U, are computed simultaneously as
unknowns.
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2.2. Unstructured Grid for CE/SE. The CE/SE scheme is constructed
to take advantage of an unstructured triangular grid. The unstructured geometry
used with the CE/SE scheme is illustrated in Fig. 1. Here, AABC is a typical
triangle cell and D, E, F are the triangle centers of the neighboring cells. The
flow variables U, U,, and U, at the previous time step are stored at the triangle
cell centers. Three quadrilateral cylinders (conservation elements) are formed by
the edges that connect the vertices and the center of the triangle and its three
neighbors. In the space-time Ej3 space, Eq. (2) is applied to the hexagon cylinder
ADBECF — A'D'B'E'C'F' of volume V that consists of these 3 quadrilateral
cylinder CEs (Fig 1).

In the CE/SE scheme, the above flux conservation relation, Eq. (2), in space-
time is the only mechanism that transfers information between node points. A
conservation element CE (here, quadrilateral cylinders) is the finite volume to which
Eq. (2) is applied. Discontinuities are allowed to occur in a conservation element.
A solution element SE associated with a grid node (e.g., D, E, or F in Fig. 1) is
here a set of interface planes in E3 that passes through this node (e.g. DAA'D’,
DBB'D', EBB'E', ECC'E', etc.). Each surface S(CE) is made up of segments
belonging to two neighboring CE’s. Within a given solution element SE(j,n),
where j, n are the node index and time step, respectively, the flow variables are not
only considered continuous but are also approximated by the linear Taylor series
expansions. The surface flux can thus be calculated accurately and easily by first
evaluating the flux vectors at the geometrical center of the surface through the
above Taylor series expansions.

At time level n, the solution variables U, Uy, and Uy are given at the three
nodes D, E, F in Fig. 1 and U, Uy and Uy at O’ at the new time level n + 1 are
to be evaluated. In principle, each of the 3 C'Es provides 4 scalar equations when
Eq. (2) is applied to the element. Hence, the 12 scalar equations needed for the
12 scalar unknowns at O’ are available. All the unknowns are computed based
on these relations. No extrapolations (interpolations) across a stencil of cells are
needed.

2.3. Non-Reflecting Boundary Conditions (NRBCs) for CE/SE. In
the CE/SE scheme, NRBCs are constructed so as to allow fluxes remain continuous
across the boundary surfaces. For example, at the downstream boundary, where
there are substantial gradients in y direction, the NRBC requires that

(Uo)} =0, UF = U2 (U,)f = (U,);7,
where j' is the index of an interior node closest to the boundary ghost node j and
U? and (U,)} are now defined by simple extrapolation from the interior. This
NRBC is valid for either supersonic or subsonic flows.

In the following sections, the 2-D and 3-D CE/SE Euler (Navier-Stokes) schemes
are tested to demonstrate its capability and robustness for aeroacoustics computa-
tions. Several selected problems in linear and nonlinear aeroacoustics computations
are presented. The numerical results, which cover a wide spectrum of waves, from
linear and nonlinear acoustic waves to discontinuous waves (shocks), are then com-
pared to available exact solutions or experimental findings.
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3. 2-D Linear Aeroacoustics Test Problems

Three typical linear aeroacoustics examples are considered in this section. More
details can be found in [5, 6].

3.1. Acoustic Pulse, Entropy Wave, and Vorticity Wave Propagation.
This problem [5] is one of the benchmark problems of the first CAA Workshop
(Category 3, Problem 1) [4]. The computational domain in the z-y plane is a
square with —100 < 2 < 100, and —100 < y < 100. A uniform 201 x 201 grid
is used with Az = Ay = 1 . Initially, a Gaussian acoustic pulse is located at the
center of the domain (0,0) and a weaker entropy/vorticity disturbance is located off
center (67,0), with a mean flow of Mach number M = 0.5 in the z direction. The
corresponding non-dimensional pressure, density, and streamwise and transverse
velocity components are given by

p= L + e~ @YYy — 1 4 glemea (@47 0 1562061 4071,
v

u= M + 0.045ye 22lz—6D*+°] 4, —0.046(x — 67)e*a2[(w*67)2+92],

where a3 =1n2/9, as =1In2/25, and ¢ is an amplitude factor. By choosing a small
6 = 0.001, the Euler equations are practically linearized. During the computation,
the NRBC of Type-I described above is enforced at all boundaries. Fig. 2 illustrates
the density contours at different time steps. It also shows that the simple NRBC is
effective. Comparison of perturbed density distributions along the centerline y = 0
with the exact solutions at ¢t = 60 and ¢t = 100 are demonstrated in Plots (a) and
(b) respectively. The numerical results agree well with the theoretical ones, with
no visible dispersion error.

3.2. Linear Instability of a Free Shear Layer and Vortex Roll-Up. In
the 2nd example [5], the inviscid linear and nonlinear instability properties of a
free shear layer is studied. The numerical results are compared with linear results
obtained by the normal mode approach.

The background mean flow consists of a fast (supersonic) stream on the top
half domain and a slow (subsonic) stream at the bottom half, with the two parallel
streams connected by a shear layer of hyperbolic tangent shape. The nondimen-
sional flow states are given as:

Uy=1,Vi=0, p1=1/315 p =1,
U, = 7391304, Vs =0, p» = 1/3.15, ps = 0.5405405.

The computational domain spans between 0 < z < 300 and —10 < y < 10, with
a uniform structured grid of 601 x 101 (1201 x 201 for fine grid), with time step
size At = 0.15. The computation is carried out until ¢ = 390 when the spatial
instability is fully developed. A small harmonic perturbation (amplitude § = 0.001)
at the most unstable frequency f = 0.062 is enforced at the inlet boundary. Fig. 3
shows the power spectrum P, of the computed u' (perturbation of u) in natural
log scale at the streamwise stations z = 50, 100, 150, and 250, which correspond
to about 3.5, 7 wavelengths and so on. At x = 50, there is a clearly discernible
peak centered at about the forcing frequency f = 0.062. At about z = 100,
second and third harmonics start to emerge. Further downstream, more harmonics
appear and eventually the fundamental saturates. The streamwise evolution of
the disturbance amplitude along the horizontal centerline y = 0 is illustrated in
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FIGURE 2. Propagation of an acoustic pulse with a vortic-
ity /entropy disturbance, and comparison to exact solution.

Fig 4. Numerical results for both the coarse and fine grids are presented and
compared to the theoretical linear growth. It is seen that for 0 < z < 100 (about 7
wavelengths) the coarse-grid and fine-grid computations yield good agreement both
between themselves and with the linear result. Further downstream, nonlinear
effects become important, the growth rate is reduced from the linear value, and
ultimately the fundamental saturates. Both numerical results agree reasonably
well with each other also in this nonlinear region. Fig. 5 shows the streamwise
evolution of the disturbance phase. The numerical results for both the coarse
and finer grids are compared to the corresponding result from linear theory. The
agreement is surprisingly good until well into the nonlinear region. Fig. 6 compares
the normalized |u'| profile across the shear layer flow with the eigenfunction from
linear stability theory at the streamwise station £ = 100, which is located towards
the end of the linear growth region. The agreement is excellent. The phase variation
across the shear layer of the disturbance at the same station is depicted in Fig. 7.
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FiGure 3. Power spectra at x = 050, 100, 150, and 250 with
forcing at the most unstable frequency according to linear theory;
(coarse grid)
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FIGURE 4. Streamwise evolution of disturbance amplitude with
forcing at the most unstable frequency according to linear theory
(f = .062). Squares: total ums, coarse grid; triangles: total tpms,
finer grid; circles: u,,s at forcing frequency, coarse grid; crosses:
Urms at forcing frequency, finer grid; solid line: linear growth.

Fig. 8 shows the contours of the flow variables for the finer-grid computation. This
figure clearly demonstrates the effectiveness of the NRBC’s at the top, bottom and
outlet. It should be emphasized that the domain shown in the figures is exactly
the computational domain, no buffer zones, cut-offs or other numerical fixes are
applied.

3.3. Mach radiation from a supersonic axisymmetric jet. Another in-
teresting linear or quasi-linear wave phenomenon is the Mach radiation from a fully
expanded supersonic jet. In the following examples, a perturbation (or forcing) is

NASA/CR—2003-212388 6
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FIGURE 5. Streamwise evolution of disturbance phase with forcing
at the most unstable frequency according to linear theory (f=.062).
Circles: coarse grid; crosses: finer grid; solid line: linear result.

FIGURE 6. Transverse mode shape at = 100 with forcing at most
unstable frequency according to linear theory, finer grid. Squares:
total wpms; circles: upms at forcing frequency; solid line: linear
eigenfunction (modulus).

provided by a right-hand-side source term in the energy equation, the 4th compo-
nent of Eq. (1), located at the origin (0,0) inside the jet core:

poa exp[—B(2? + y?)] cos(wt),
where § = 0.001 is a small number, w = 27St (St being the Strouhal number),
and the constant B = 8. In this test example [6], a fully expanded supersonic
jet with Mach number M; = 2.0 is considered. The computational domain spans
between 0 < z < 33D and 0 < y < 19D, with a non-uniform structured grid
of 350 x 281 nodes, where D is the diameter of the jet at the nozzle exit. More
grid points are packed around the shear layer. The computation of the unsteady
jet flow is carried out to t = 100 when the spatial instability is fully developed.
Fig. 9 illustrates the isobars and v-velocity contours in the near and intermediate
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FIGURE 7. Transverse phase variation at & = 100 with forcing
at most unstable frequency f = .062 according to linear theory,
(fine grid). Circles: wu,ms at forcing frequency; solid line: linear
eigenfunction (phase).

field. The Mach radiation flow pattern agrees qualitatively with experimental [7]
and other computational [8] results.

4. 2-D Nonlinear aeroacoustics Test problems

In this section, several examples of non-linear aeroacoustics involving shocks
are demonstrated to show the capability of the CE/SE scheme.

4.1. Multiple Interaction of a Strong Vortex and Shocks. Vortex-shock
interaction has been considered a ’difficult’ problem for CAA , since most of the
CAA schemes handle weak acoustic waves and srong socks simultaneously. How-
ever, the CE/SE Euler scheme can solve the problem in an effortless way, without
any numerical trick or fix [5]. As seen in Fig 10, a uniform structured grid of
401 x 101 nodes is employed in the rectangular domain with Az = Ay = 1. The
inflow boundary condition is given as a supersonic flow with a Mach number of 2.9:

Uy = 29, Vg = 0, Po = 1/14, pPo = 1.
The boundary condition at the top is an inclined flow:
up = 2.6193, v, = —0.50632, p;, = 1.5282, p; = 1.7000.

The outflow boundary condition is the type-II NRBC and the bottom is a solid
reflecting wall. Then, a steady oblique shock is formed with 29° inclination and
reflected at the bottom wall. The flow with shocks is pre-calculated until a steady
state is reached. It is then used as the background mean flow for further computa-
tion.

At t =0, a strong Lamb’s vortex is placed at (22,60) (Fig. 10). With At = 0.2,
900 time steps were run. Fig. 10 demonstrates the shock-vortex interaction at the
different times ¢ = 2, 20, 38, 56, 74, 92, 110, 128, 146, and 180, and shows how the
nonlinear acoustic waves are generated, and how they pass through the shocks and
convect downstream.

NASA/CR—2003-212388 8
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4.2. Screech tone noise of an axisymmetric underexpanded jet. Screech
tone noise is a typical nonlinear aeroacoustic phenomenon. In nature, the screech
noise is caused by an acoustic feedback loop between the jet nozzle exit lip (or
nearby solid surfaces) and the shock cell structure. At the low supersonic jet Mach
number M; = 1.19, the overall motion in the experiment [8] is in an axisymmetric
mode, and the use of an axisymmetric 2-D scheme is appropriate.

The Navier-Stokes CE/SE solver with LES (large eddy simulation) is applied to
a triangulated grid of 88300 cells [10]. The geometry of the computational domain
is shown in Fig 11. Both Type I and II NRBC’s are applied appropriately to
all boundaries except at the nozzle solid walls where no-slip solid wall boundary
condition is employed, and at the nozzle exit where the following inflow condition
is applied:

_
1+ 3(y=1)Mz|""
=po|—2=" "7 , =05(y+1
Pe=P | S I0 o Pe (v +1)po

Jile
1+ 5(y—1MZ|*?
1+3(v-1) ’
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FIGURE 9. Mach radiation of a supersonic jet at M; = 2.0 and
Strouhal number St = 0.2, domain size 33Dx19D, non-uniform

grid.
2 )
Ue = ,Ve = 0.
Initially the entire field is set to the quiescent ambient flow:
1
PO=1, u =0, vo=0, po=—.
v

In the numerical simulation, the initial impact of the boundary condition at the
nozzle exit will stimulate the jet shear layer and trigger the feedback loop to form
the self-sustaining oscillation that generates screech waves. Fig. 13 illustrates the
radiating screech waves at the time level of 410,000 steps. Since there is no forcing
at all, these waves are a sure sign of the presence of a sustainable self-excited oscil-
lation. In processing the numerical data for this figure, the very high level isobar
contours, corresponding to hydrodynamic waves around the jet core area are ‘cut
off” and the ‘colors’ are appropriately adjusted so that the acoustic waves are clearly
displayed. The screech wavelength is about 1.6D, well in line with experimental
results (e.g. [8]). The shock cell structure in Fig. 13 is comparable to the exper-
imental Schlierens in Fig. 12. Fig. 14 shows the PSD (power spectrum density)
at the location (z = 2.0,y = 6.0). It is seen that the spikes at the fundamental
frequency and the subharmonics shoot out against the background noise, despite
the low resolution. The fundamental frequency is estimated to be about 8,661 Hz
in this case, comparable to the experimental case - 8,525 Hz.

NASA/CR—2003-212388 10
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isobars for a vortex passing through shocks, with
acoustic waves generated.

F1GURE 10. Multiple interactions of a strong vortex and shocks
producing nonlinear acoustic waves.

4.3. Transonic resonance of a convergent-divergent(C-D) nozzle. The
transonic resonance phenomenon of a C-D nozzle is a newly discovered jet noise
[11] and is believed to be a precursor of such jet noises as the screech tones. Fig 15
is a sketch of the C-D nozzle transonic resonance problem. When the flow is at
transonic speed, a shock Mach disc is formed at the nozzle throat. the disc vibrates
like a diaphragm as a result of the self-sustaining oscillation in the flow, and triggers
the quarter wave-length resonance of the divergent part of the nozzle, as if it were a
circular duct with one end close. Fig. 16 shows that the computed frequencies agree
very well with the experimental ones, including a stage jump where the resonance
switches from fundamental frequency to the third harmonic. Furthermore, the two
plots in Fig. 17 demonstrate the r.m.s. pressure fluctuation along the centerline
of the divergent portion of the nozzle, showing clearly the fundamental frequency
resonance (bottom plot) and third harmonic resonance (top plot). The numerical
work thus helps to confirm the theory on the transonic resonance. The numerical
work is detailed in [11].

4.4. the 3-D screech noise from a circular jet. The present problem is
a 3-D version of the jet screech problem in §4.2. In order that the flow and and
noise are truly three dimensional, the jet Mach number is set at M; = 1.42 [9)].

NASA/CR—2003-212388 11
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Approximately 3.7 million hexahedral cells are employed in the numerical solution.
For a huge grid like this, parallel computation becomes necessary. A Linux PC
cluster of 60 processors is used. Fig. 18 shows that the computed shock cell structure
agrees well with the experimental one. For example, the shock cell spacing is about
1.28D, D being the jet diameter at the nozzle exit. The radiated screech waves are
in the flapping B mode, as shown in Fig. 19.

5. The Airframe Noise Problems

Airframe noise is an important noise source in aeroacoustics. Several airframe
tone noise problems are considered in this section to demonstrate the capability of

the CE/SE scheme.

5.1. The subsonic cavity noise problem. In this problem[12], a M = 0.8
subsonic flow passes over a cavity of aspect ratio 6.5. Tonal oscillations occur in
a feedback cycle in which the vortices shed from the upstream lip of the cavity
convect downstream and impinge on the other lip edge, generating acoustic waves
that in turn propagate upstream to excite new vortices (Fig 20).

In the computational domain, 42,000 triangular elements are used in the un-
structured grid, which is made from structured rectangular cells. Figure 21 depicts

NASA/CR—2003-212388 12



isobars at time step 410,000
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FIGURE 13. Screech wave radiation and shock cell structure (nu-
merical Schlierens).
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FIcUure 14. PSD at (2,6); x-axis: Strouhal number St, St=1 is
equivalent to 13504 Hz.

with isobars where the acoustic waves are generated and propagate in a series of
snapshots (1-12) in the near field of the cavity. Each snapshot is 3.6 (720 steps) unit
apart in time. Initially, the flow conditions are set to be identical to the quiescent
ambient flow. The boundary conditions are the appropriate types of NRBC except
at the cavity walls, where no slip wall boundary condition is applied. No visible
reflections are observed at the non-reflecting boundaries. At the inflow boundary,
upstream propagating waves are well absorbed within 3-5 cells, without contam-
inating the interior domain. From an animation of the solution, the near field
acoustic wave structure appears to be complicated and chaotic.

NASA/CR—2003-212388 13
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FIGURE 16. Frequency vs. jet Mach number M;, showing fre-
quency jumps (staging).

5.2. Flat plate trailing edge noise. In this last example, the noise gen-
erated by the von Karman vortex street downstream of a rectangular blunt slab
is computed [13]. The flow Mach number is M = 0.3. Figure 22 illustrates the
details of the computational domain. Initially, the entire field is set at the ambient
flow. Then the inflow of M = 0.3 is imposed at the left boundaries. At the solid
slab walls, no-slip condition is applied. The computation is totally carried out for
390, 000 time steps. Time history at the data point as shown in Fig. 22 is recorded
for FFT analysis. The power spectrum density (PSD) is shown in Fig. 23. As be-
fore, the z— axis denotes the reduced frequency — the Strouhal numberSt. St =1
is equivalent to a frequency of 13,504 Hz if the thickness of the slab is assumed to
be one inch. The frequency at the lowest tone spike is 791 Hz, almost identical to
Heinemann’s experimental result [14].

NASA/CR—2003-212388 14
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FIGURE 17. r.m.s. pressure fluctuation along the nozzle centerline

FiGURE 18. Comparison of experimental and numerical schlierens,
showing shock cell structure. Note that the experimental result is
a time-averaged one and the numerical one is instantaneous.

6. Concluding remarks

Through numerous numerical examples, the capability of the recent CE/SE
schemes for aeroacoustics computations is demonstrated. The scheme features:
(1) naturally adapted to unstructured grid,

(2) high resolution, low dispersion, and low dissipation, despite its nominal 2nd
order accuracy (in space and time),

(3) robust, treats the ’difficult’ problems in a simple, effortless way, particularly
appropriate for near field, non-linear aeroacoustics,

(4) the novel NRBC is simple, effective and truly multi-dimensional.

The CE/SE scheme thus is a viable tool for CFD and CAA, and in particular,
for nonlinear aeroacoustics.
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